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Space-charge waves carried by a plasma trapped 
in a potential well 

By F. D. KAHN 
Astronomy Department, University of Manchester 

(Received 4 August 1964) 

A mono-energetic electron plasma is trapped in a one-dimensional parabolic 
potential well. In  the undisturbed state a suitable background charge provides 
space-charge neutrality. It is shown that stationary disturbances of infinitesimal 
amplitude can exist in the plasma for certain critical values of the parameter 
A = 4Tie2/mo2, where i5 is the mean electron density and o / 2 n  is the frequency 
of oscillation of the electrons in the well. The first few critical values are A = 0, 
4.12,8.2.  

The boundary conditions at the end of the plasma are non-linear. As a result 
stationary disturbances of finite amplitude in a given mode, say the rth, require 
that A shall exceed 4. Further it can be shown that disturbances of small 
amplitude in the rth mode are unstable when A exceeds A,.. This applies even for 
A, = 0; in this case there exist nearby an unstable even and an unstable odd 
mode. 

It seems likely that these results can be extended to all cases in which the 
potential well is symmetrical. 

1. Introduction 
Problems involving plasma waves are usually relatively easy to solve if the 

medium in which they are carried is infinite, and uniform in space and time. 
But the plasma is often finite and non-uniform in practical cases, for example, in 
the Phoenix experiment (Kuo, Murphy, Petravic & Sweetman 1963). It is there- 
fore interesting to consider how finiteness or non-uniformity changes the plasma 
properties. Watson & Rowlands (1963) have recently described the nature of 
the two-stream instability in a plasma which is trapped in a parabolic potential 
well. Their solution applies to disturbances with many nodes between the end- 
points of the plasma. In  this limit the wavelength of the disturbance is small 
compared with the typical scale of the non-uniformity. Watson & Rowlands 
find that the properties of the plasma waves are then altered only very little. 

The same problem is tackled again in this paper. This time no restriction is 
placed on the number of nodes. We shall find stability criteria for disturbances 
in the various modes; it also turns out that there are non-linear effects present 
which cannot be neglected even for disturbances of small amplitude. They arise 
because, in a mono-energetic plasma, the electron density tends to infinity at 
the edges of the trap. 
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2. The linearized equations 
When undisturbed let the charged particles move in a parabolic potential 

well between the planes x = f a under a restoring force - 0% per unit mass. The 
particles then oscillate in the well with a period 2n/w. If no is the electron density 
at x = 0, and E the mean electron density in the trap, then 

2%aw/n = nOuO = nowa, (1) 

(2) 

where uo = w a  is the electron speed at x = 0, 
and so 

'il = &no. 

Half the electrons belong to the right-travelling, or the + stream, the others 
to the - stream. The charge density due to the undisturbed electrons, each with 
charge e ,  is 

en(x) = noe(l -xZ/a2)-* 

= (2/n) E e ( 1 -  x2/az)-* (3) 

at position x .  Let there be an equal and opposite background charge present, 
which remains unchanged in any disturbance. Consider what happens when 
the electrons are perturbed. In  particular, let the electrons at position x in the 
-t streams be respectively displaced by distances a6* to the right. There will 
then be an unbalanced space charge $n(x) ea(6, + $-) to the right of position x ,  
in first approximation. The electrostatic field at x becomes 

E(x) = - 2nn(z) ea(6+ + g-); 

d2/dtz (z + a6,) + w2(x + a4*) + 2nn(x) a(e2/m) (6+ + 6-) = 0. 

d2x/dt2 + w2x = 0. 

( 4 )  

( 5 )  

( 6 )  

the equations of motion for the two streams become 

The undisturbed electrons would, however, obey the equation of motion 

After subtraction one can obtain the equations describing the disturbance and 
write them, in Eulerian form, 

+ u(z)  - 6* + w2[* + 2nn(z) (e2/m) (E+ + 6-) = 0. {i- 6y 
Convenient new independent variables can be introduced here by setting 

x = asin#, r = at, 
so that n(z)  = (2177) E sec q5 and u(x) = aw cos q5; 
further, let A = 4Ee2/mw2. 
The equations ( 7 )  become 

for the + stream, and 
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for the - stream. When there is no .r-dependence the two equations apparently 
become identical; with Z = Q(f;+ + c-) one obtains 

Z“+E+AEsecqi = 0. (12) 

We shall see later that this equation describes a stationary disturbance of small 
amplitude in an even mode, i.e. when 9 is an even function of 4, but not in an 
odd mode. 

The electric field at position qi is proportional to 6 sec qi. It cannot become 
infinite anywhere, since the trap contains only a finite number of electrons, per 
unit area. Hence 6 see qi should tend to a finite limit as 4 tends to If: &r, and so E 
should vanish there. The solution for the steady state is really not quite so simple; 
the boundary conditions at f &r have to be handled more carefully, since the 
linearization always breaks down there. We shall consider this problem in $5. 

3. Solutions of the eigenvalue problem 
It is a straightforward eigenvalue problem to find solutions of (12), with the 

boundary conditions E = 0 at qi = fin (see, for example, Titchmarsh 1946, 
1958). There is a discrete set of eigenvalues A = A,, A,, A,, . . . for which appro- 
priate solutions exist. The lowest A is, obviously, A = 0, and has the correspond- 
ing eigenfunction a, = 2-lt cos qi. 

The factor 2 4  is introduced for purposes of normalization. The other A’s are 
successively larger, and their corresponding eigenfunctions are alternately odd 
and even in q5. We define the sign of the E’s so as to make dE/dq5 negative when 
qi = Qn. 

The orthogonality condition is derived by noting that 

-”= arms - 9 r 3” s = - (A, - As) 3,Es S ~ C  6. 114) 

On integration from - in to in the left-hand side vanishes, and so 

(15) 
4. 

E,6, sec q5 d$ = 0, 1-4. 
unless A, = A,, or r = s. We adopt the normalization condition 

E:sec+d$ = 1. (16) 

Putting s = 0 in (15) leads to 

unless r = 0. Finally, the 6,’s form a complete orthogonal set over the interval 

Numerical values for the A’s and E’s can be readily estimated as follows. In  
( - 8n, in). 

the range -in < @ < in expand 

45-2 
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and, in the case of an odd solution, let 

W 

8 = C. b2,sin 29-4. 
r = l  

The equation (12) can be written 

(8“+ 3) cos # = -A=. (20) 

After substitution from (18) and (19) both sides can be expressed as Fourier 
series in terms of sin%$. This series is now cut off at some chosen N ,  and one 
can then equate coefficients. If N = 3 we find roots A, = 1-76, A3 + 8.2, 
As = 23.8; the value given for A, is not reliable in this approximation. The 
normalized eigenfunctions corresponding to A, and A3 are 

(21) 1 3, = 0.60 sin 2 4  - 0.05 sin 44 + 0.01 sin 64, 

3, + 0.23 sin 24 + 0.46 sin44 - 0-10 sin 6$. 

For the even eigenfunctions one uses the same expansion for cos 4 but writes 

m - a = b2T-l cos (2r- 1) $. 
r = l  

In  any approximation A = 0 is a root. The next eigenvalue, in the approxima- 
tion with N = 4, is A, = 4.12; the fist two even eigenfunctions are 

3, = 2-4 cos 4 
3 2  .I. 0.20 cos 4 + 0.54 cos 3 4  - 0.10 cos 54 + 0.03 cos 74. and (23) 

4. Stationary modes as limiting cases of time dependent disturbances 
The time-dependent equations of a disturbance are 

and 

Write 

$(6+--5-) = 0, 

and let the time dependence of E be like cosh ar. It is readily seen that 0 then has 
a time-dependence like sinhar. Addition of (24) and (25) gives, with the time- 
dependence omitted, 

and subtraction gives 

Consider now the solution of (26) and (27), when a is small. One would try then 

0’’ + 0 = - 2&’. 
to approximate (27) by 

E”+ Z(1 +a2) +AZsec 4 = - 2a0’, 

0” + 0( 1 + CT,) = - 2fJE’. 

(26) 

(27) 

(28) 
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The boundary conditions on 0 are that 0 = 0 at q5 = &- &r, or else [+{ = &(E + 0)) 
cannot go over smoothly there into 6- { = &(E - 0)). The solution of (28) which 
vanishesat # = - 9, is 

Q o(+) = - 2 a j P a n  ~ ( u )  sin (q5 - u) du, (29) 

and so O(&?r) = - 2 a  E’(u)cosudu. 1:;. 
This also vanishes when E is an even function, and so a solution exists in this 

approximation. 0 is then of order a, and goes to zero in the limit as u -+ 0. 
Thus equation (12) correctly describes an even stationary mode of small 
amplitude. 

But for an odd mode one cannot in general find a solution of (28) to satisfy the 
boundary conditions. This equation is, therefore, a poor approximation. Return- 
ing to  the full equation (29) we see that in this case a possible solution is approxi- 
mately 

@ = - -  2: zf’ ~ ’ ( z c )  sin{(l+ 4u2) (9 - u))du + A cos (I  + & a ~ )  4 
1+2a 0 

0 vanishes at (9 = if 

The dominant part of the expression for 0 is now 

On substitution into (26) one finds that 

8 - I1 
J +E++Esecq5 = --sin# 

?r 

(31) 

(32) 

(34) 

having neglected the contribution c-rZE on the left-hand side. The equation is 
valid if cr is small enough, and so, as a tends to zero. It is the appropriate equation 
for finding the stationary odd modes of the system. The boundary conditions are 
that 9 = 0 at q5 = & +r. 

But in the limit as a tends to zero, relation (33) suggests that 0(”) becomes 
infinite. On inserting the assumed time dependence one sees that this is not 
a real infinity, but that the dominant part of 0 becomes 

4. 

-it-. 
O(”) sinh UT z - (i) 7 cos # f S(u) sin u du 

(35) = r8wcosq5, say. 
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This term grows linearly with time, but is never infinite. It can be removed by 
suitably re-defining the motion of the reference particles, as follows. 

An undisturbed electron, in the right-moving stream, say, has its angular 
co-ordinate given by q5 = r + E ,  where E is a phase angle. Its position is then given 

x: = usinq5 = usin(T+e). (36) by 

If only a disturbance of the form (35) is present the electron is displaced to 

x + 6 x  = u(sinq5+rSwcosq5) = usin(q5+rdw) = usin(~(1+6w)+~).  (37) 

The effect of the W) term is to change the angular frequency of the electrons in 
the trap. The @(m) term can, therefore, be simply removed by giving a slightly 
different definition to the motion of the reference particles. Such a change 
produces no space charge anywhere, and therefore leads to no physical effects. 
One readily sees why the frequency of the electrons has to be changed like this, 
for the trapping field is odd, and if the disturbance field is odd as well, then they 
add together coherently. This does not happen for an even disturbance field. 

We go on to find the values of A such that solutions of (34) can be found to 
satisfy the boundary conditions. Expand 

cn 

r=1 

On substitution into (34) one then obtains that 
m m 

where 

Multiply both sides of (39) by Za-l and integrate over q5 to find that 
m 

r=l 
Ca-l(A-Aa-1) = - 2nBzs-1 2 c Z ~ - ~ B ~ T - ~ .  (41) 

Now multiply both sides of (43) by Ba-l/(A-Azel) and sum over all s to find 

that m 
1+2n z (42) B L l  = 0. 

s=l A-Aa-1 

The coefficients Ba-l may be expressed in another way. From the equation de- 
fining Eah1 one has that 

A2s-1 f4" %2s-1 sin q5 dq5 = - ['" (Zls-l + sin q5 cosq5 dq5 

after some integration by parts, and on using expansion (19). The supedix 
2s - 1 now indicates that the expansion refers to the function Thus 

BZs-, (3/2&-1) b',28-'). (44) 



Space-churge waves carried by a plasma 711 

Values for bhl) and bk3) can be read off from relation (21); other b, coefficients will 
not be needed in the approximate calculation which follows. But, in general, 
values of A which allow the existence of a stationary odd mode can be found, 
i.e. 

= 0. (45) 
9n {bp-1)}2 

2 s=l A;,-l(n - A28-1) 
P(A)  G 1 + -  - 

This equation in A has a countable infinity of non-negative roots. Clearly 
P(A)  -+ T 03 whenever A + A&-, T 0, respectively. There is then just one root 
between each and &+,. 

Note that 3 = Q cos Q satisfies the boundary conditions and the equation (34), 
when A = 0. Hence F(0)  = 0. Purther, $'(A) is a strictly decreasing function of 
A when A is negative. Thus A = 0 is the smallest root. 

The next higher root of P(A)  = 0 lies between A, and A,. On insertion of numeri- 
cal values one finds that it is actually quite close to A,. Only the coefficients 
bh1) and b f )  make an appreciable contribution and need to be retained in the 
calculation. On setting A = A, + SA and neglecting SA in comparison with A 
one finds that 

(46) 

so that SA = -0.0088. The displacement of A from A, is only very small. For 
higher odd modes it is even less significant. 

In  summary then, even stationary disturbances of small amplitude can 
occur near A = A, but the odd modes are displaced from Ab-, to A&-l. The 
lowest of these is AT: = 0. The other A* are only slightly smaller than the cor- 
responding A. 

5. Non-linear effects at the boundary 
Only linearized equations have been used so far to describe the plasma waves. 

But the linearization breaks down near Q = & in, and a different solution has to 
be found there. 

Consider the motion near Q = in for an even time-dependent disturbance. Let 
the motion be so defined that an electron is furthest in the direction of x increasing 
(or furthest to the right) at  the instant when its reference particle passes through 
Q = in. This can always be arranged, if necessary, by adding an amount 
k 8, cos Q to [+. The alteration does not change the value of +([+ + g-), or of its 
derivative. Let &in) = &, and write $ I 4.n- 4. 

Two cases arise, depending on whether [* is negative or positive. If c* is 
negative, each electron remains to the left of its reference particle while in the 
immediate vicinity of $ = 0. Consider then the charge to the right of an electron, 
whose reference particle is at position $. Since the reference particles are uni- 
formly distributed with respect to $, the total charge due to  the electrons in this 
region is n,ea$. If the reference particle is at $, the electron is actually located at 

(47) x = a(cos$+E) = a c o s p .  
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Hence the background charge to the right of that electron contributes - n,ea$', 
and the net charge becomes noea(@-p);  the corresponding electric field is 
- 4mnoea($- $'). The equation of motion becomes 

or (d26/d$.") + 5 +A($ - 9') = 0. (48) 

$' = (g2 - 2t)4 

(d2t/d$') + 6 + A[$ - ($2 - 2t)*] = 0. 

Since $ and 9' are small, one can now approximate by setting cos $ f 1 - a$-" 
and cos 9' = 1 - &Y2, so thpt 

and (48) becomes 

When @2 much exceeds 2/61 one can expand under the square root sign, and 
recover the form of the linearized equation appropriate near 4 = 0. But there 
is a region within which this cannot be done. Here one may approximate by 
setting t + - and integrate, with the boundary condition d&l$ = 0 at 
9 = 0, to find that 

(49) 

(50) 

d6/@ = @It* I - +A[$."- 9w2 + 216*/)41 + 4 6 *  I sinh-l9/(216* I (51) 

dt /d$ Al&Ilog29-+RJ6*!log2]6*) M h]6*Ilog9--A15*IlogI6*I, (52) 

and here the second term on the right dominates. We also see that dt/d$ is 
of order 6, log 1, and so the change in the value of 6 over a range 9 is at most 
of order 
in the boundary domain, as long as yk log I 6* I is kept small. The linearized solution, 
which is valid outside the boundary domain, must therefore be matched smoothly 
to  the conditions 

In the region where $2 much exceeds 2 I this leads to 

I log 1. One can therefore consistently neglect the variation of 

But if 6* is positive, the equation (50) cannot be used all the way to 9 = 0,  since 
@2-21 eventually becomes negative, and then all the background charge is 
to the left of the electrons. The electric field on a given electron can then be 
found simply in terms of those electrons which are to its right, so that 

(d26/d$') + (+ A$ = 0 (54) 

replaces (50) there. The calculation can be carried through as before, but now in 
two parts. One finds that the required boundary conditions to be satisfied at  
the edge of the linear domain are that 

when q5 = an. Except for small A the ratio 1.51 : (dt/d+I is small at the boundary. 
Hence an adequate boundary condition for a small amplitude disturbance is 
.5 = 0 when q5 = $IT. Stationary solutions in the neighbourhood of A = 0 have to 
be discussed separately (see $7). 
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In  discussing the boundary layer for an odd mode one finds that the only 
difference is that there is now the additional term 

to  be added to equation (50). Near the boundary sin4 = 1; further the integral 
is evidently of the same order as Sf(&r). On following through the calculation 
one obtains estimates for E which are the same as in (53) or (55), to the accuracy 
required. The value for d[/dq5 is changed by an additional term of order $YE:'(&). 
This change is negligible, since Z(&) is of the same order as d[/d$, while $Y is 
small. Relations (53) and (55 )  therefore apply to even and to odd modes. 

6. Unstable disturbances 

whenever A increases through a positive A, or A&-l. 

for 0 and S may then be written 

It will now be shown that, as one might expect, a new mode becomes unstable 

Consider first an even mode. Let A = A,, + A;  the time-dependent equations 

(56) 

and a;, + 0, = - 2&&, (57) 

- L@) = 9" + S + A,,+ sec q5 = - cr29,, - 2 ~ 0 ; ~  - AS,, sec $, 

in good enough approximation. If the solution is expanded in the form 

cn 

then the boundary conditions on E at  q5 = f 
Further (56) becomes 

are automatically satisfied. 

see q5 x (A,, - A,,.) a2,.S2,. = - ( ~ ~ 9 %  + 2 ~ ~ 0 ; ~  + h9,sec 6). (59) 
r=O 

The coefficient of E, on the left-hand side vanishes. On multiplying through by 
S2, and integrating both sides, one finds that the relation between h and CT is 

We shall now show that 

so that real positive values of (T occur when h is positive, and the waves are then 
unstable. 

To establish the result expand a,, which is an odd function of q5, 
OD 

O,, = (T x p,sin2r#. 
r=1 
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Hence from (64) 

and 
1 O5 4r2-1 

cos 2 4  + A ; - 
=T f i b  = -- 

2 r=1 

the constant of integration A must vanish since we know that 
Hence 

since this is clearly negative, our result is established for the even modes. 
Por an odd mode we must first separate out the main part @$$., of 

that 

and Oa-l is orthogonal to C O S ~ .  The equations for a slightly unstable wave 
become 

so 

(65) Qb-1 = @&+O,,, 

8 +-A 

L&-l(E) E 3" + E + 3 sec # + - sin # 9 sin u du 
7r /-in 

(66) 

(67) 

= -g2 - *  a2s-l - 2aO,-, - A&&-.l sec gl 

o ~ - ~  + e,, = - 2r{Sgi-1 - BT cos $1. and 

The coefficient BT is defined in the expansion 
m 

Once again unstable waves occur for positive values of A if 

or if 

The requirement is met if it can be shown that 
m 

and this is readily established as follows. An alternative expansion for Z&-l is 

Evidently 

and so (71) is proved if i t  can be shown that 

(72) 

(73) 

or 
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or, even better, that 
To do so we note that 

BT2 < $bt2.  

715 

(74) 

so that @; = A* 26-1 BT . (75) 

Now A&.-l certainly exceeds J3 when s exceeds unity. The result therefore 
follows, except in the case that A = A: = 0. 

7. Non-linear effects on stationary disturbances 
We come now to consider the effect of the non-linearities which arise near 

q5 = f in when the wave has a finite amplitude. The boundary condition (55)  
can then be written in the form 

as q5 -+ Qn, and in an analogous form near $ = - an. We deal with the even modes 
first. 

To take account of the changed boundary condition we re-write the equation 
for E in the form 

and so B -+ - 2E'(&r)/(Alog I&..) as q5 --+ +n - 0. If A is only little altered by the 
change, then one may write A = A& +A, and again regard h as small. On using 

the expansion E = 2 a2rB2r one finds that 
r=O 

m 2B;l,(Qn) 

+=0 A,@ l5*1 
sec $ a,(A, - A , )  Szr = - Sr(+n-$)-AE,secq5. (78) 

Multiply through by E, and integrate from 0 to Qn to find that 

or = -4e$(gn)/(A,log I & ] ) ;  (79) 

and this is positive, since log I,!& I is negative. The amplitude of the disturbance 
goes to zero with c*, and so does A. 

The argument for the odd modes is entirely similar, and we find that the non- 
linear boundary conditions produce a change in A* amounting to 

= -4{"*' %-l(4n))z/(~~8-l 1% I E* I ) ,  (80) 
provided s 3 2 .  

The non-linear corrections take on a somewhat different form when the 
electron density is low, and so A is small. Consider therefore a small value of 
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A, say A = A,. For this parameter the linearized equation describing a stationary 
disturbance in the even mode is 

-n c +8+A0Zsecq5 = 0, 
and has the solution 

9 = A(c0s q5 - A,), 

correct to the first order in A,. This solution matches on smoothly tcrthe boundary 
layer provided that 

S(&) = &, and %’(&r) = -!~A,&log)&j. (83) 

,& =-A,A  and - A  = -4A  0 5 * 1 ogIt*l, (841 

A; = -2/log)[*1. (85)  

Hence 5* = k exp ( -  2/A;) (86) 

(87) 

To be specific, take the disturbance with the upper sign, for which the electric 

This means that we must have 

so that the solution is either trivial (& = 0) or else 

and E = T ( l/A,) (cos q5 - A,) exp ( - 2/49. 

field, in dimensionless form, is 

d=-A,Esecq5 =exp(-2/A~)(1-A0secq5). (88) 

The diagrams in figure 1 show plots of d and B against sin q5, the distance from 
the centre of the trap. In  this mode there is a potential difference 

Av = - 2e-Z‘Ai (1 - &/Ion) 

between the ends of the trap. It is also seen that the electrons overshoot the 
background plasma on the right-hand side, and ‘undershoot’ it on the left. 

The linearized equation describing a stationary odd disturbance is 

and once again A, is supposed to be small. When A, vanishes, (89) has the solution 

(90) 9 = Bq5 cos 9; 
to the first order in A, equation (89) therefore becomes 

It is easily verified that the solution required here is 

When q5 = in, then, 
3 = Bq5 cos q5 + BA,(( 4/r) sin q5 - q5}. ( 92) 

(93) 

- 
c,=- BA,( - 4/77) = E* 

and dE/d$ = - &B~T = - &Ao& log I& 1, 
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to sufficient accuracy. On elimination of B one finds that 

A: = - 2{( 1 - 8/n2) log I E* [ }-’ 

717 

or 

Going back to (93) one now finds that 

(94) 

(95) 

FIGURE 1. The semi-circular curve shows how the displacement B of an electron varies 
with distance from the centre of the trap, in the lowest even stationary mode. The other 
curve shows the variation of the electric field 1. Notice how both 8 and S reverse signs 
near the ends of the trap. 

These equations describe a stationary odd disturbance which can exist in 
the plasma even for small A,. This time the amplitude is much smaller, for a 
given A,, than in an even disturbance, because of the presence of the factor 
(1  - 8/n2) + 0.19 in the denominator of the exponent. 

There is no potential difference between the ends of the trap in an odd mode, 
but the potential difference between the centre and the edge of the trap is, in 
dimensionless terms, 
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8. Stability of the plasma when the electron density is low 
We shall consider the stability of disturbances in plasmas for which A is 

close to zero. For larger values of A, say when A was close to A2n, the procedure 
was to set A = Ann + A and to consider a disturbance of infinitesimal amplitude, 
with a time dependence of the form coshcm. On applying a perturbation pro- 
cedure to the linearized equations we then found a linear relation bekween u2 
and A. Solutions in regions with u2 positive were judged to be unstable. But this 
method cannot be used near A = 0, for the coefficient of a2 vanishes there, as 

FIUURE 2. Curves relating values of and A for which stationary disturbances can 
exist. Reading from the left the curves refer to the lowest even, the lowest odd, the 
second even and the second odd modes. A particular mode is unstable when ( / & I ,  A) 
lies below the corresponding stationary solution curve. The points (15*1, &) and 
(I E* I, & + &A) are shown to illustrate the argument leading to a stability criterion for the 
lowest even mode (see IS). 

is easily verified. Hence we shall look a t  the time-dependence of a solution of 
finite amplitude, whose representative point lies just below the curve for station- 
ary solutions in the (&, A)-plane. 

Let therefore X,($) be the stationary even solution when A = A,, and let 
X,( in) = & , so that XA( in) = - &I, & log I t* 1. To a good enough approximation 

(98) 
then 

where A = &A,jj1e-2/k8 and X’(Hn) = - A .  

Now keep & fixed but consider the solution for A = A, + 6A. If 6A is positive, 
the point (&, A, + 6A) lies below the stationary solution curve. The corresponding 
disturbance is therefore time-dependent. Let i t  be E(4) cosh m. 

x, = A(c0s 4 -Ao) ,  

To satisfy the boundary conditions now requires that 
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As in previous calculations 

Of'+@ = -2o.X; = 2aAsin4. 

The solution for which @(in) = 0 is 

0 = -~A#cos# ,  

so that the perturbed equation which S must satisfy is 

S"+B+A06sec$ = -u2X,-2a0' -SAX,sec# = H ( $ ) ,  say. (102) 

Multiply both sides of this equation by X, and integrate from -an to in. 
After some integration by parts, and on using the fact that X, satisfies 

one finds that 
Xi+X,+A,Xsec# = 0, 

Now 
and 

The left-hand side of (103) therefore becomes 2A26A. On substitution from (98) 
and (99) into the right-hand side of (103) we then find, after some reduction, that 

(104) 

a2 = 6A/A,, (105) 

X,(*77) = E(@) = t* = -A,A 
S'(in) - Xh(i7~) = - QSA& log 15*1 + - (SA/A,) A .  

2A26A = 4A2A,a2 - 2Az8A, 

to a good enough approximation. Thus 

so that o.2 is positive, and the disturbance unstable, if &A is positive. This means 
that once again points below the steady solution curve represent unstable 
disturbances. 

We now consider odd disturbances, and the method is quite similar. Let 
X,*(#) be the stationary odd disturbance when A = A,. Once again 

X,*(+n) = t* = -AoB($n-4 /~)  
and 
Further, 

= - P o  5* 1% /5* I = - w. 
X,* (4) + B# cos # + BA,{ (4/n) sin # - 4). 

As usual we split up @ = @(") + 6, 

where Wrn) contains the cos $-dependent part. 0 now satisfies the equation 

8" + 8 = - ~ 2 @ ( " )  - 2uX,*', 

and after some computation one finds that the approximate solution is 

3 
6 = - ~ B ~ ( ~ ~ c o s # - q c o s # ) - 2 a B A ~  #sin#+-cos#-1 

77 
The equation for E becomes 

8 * f l  

S" + S + A,E sec $ + -sin $ Z sin $d# 
77 /-+n 

= - u2Xg - 2 ~ 6 ' -  SAX,* sec $. (107) 
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Once again we multiply through by Xg(q5) and integrate from - 477 to hn. The 
resulting relation is that 

and again the points below the steady-solution curve represent unstable 
disturbances. 

9. Discussion 
In  many ways the properties of the plasma in the trap resemble those of the 

uniform double-streaming plasma. Both can carry unstable space-charge waves, 
and both have certain critical values for the electron density, above which new 
unstable waves can switch on. 

But there are also some significant differences. The trapping field eventually 
stops the electrons in the +stream and turns them into the - stream. Since 
there can be no infinitely large forces anywhere the transition must be smooth, 
and this affects the boundary conditions at the end of the trap. Non-linear 
equations must be used to describe the boundary regions and they show that a 
layer of space charge will always build up there. They also permit the calculation 
of the amplitude of a stationary disturbance which the plasma can carry, in a 
given mode, at a mean density E somewhat larger than the critical value for that 
mode. Disturbances of smaller amplitude will be unstable at mean density 5, 
and will grow to reach the amplitude of the corresponding stationary wave. 

Again, in the double-streaming plasma, an electron comes from -a say, 
passes once through the disturbed region and then on to 00. But in the trapped 
plasma a given electron passes repeatedly through the disturbed region. In  an 
odd mode the effect of the disturbance field on an electron can add coherently 
to that of the trapping field, and in the lowest modes a large phase difference may 
then be built up between an electron and its reference particle. As a result 
stationary odd modes are described by equations different from those for the 
even modes, and the critical values of the electron densities are therefore dis- 
placed for the odd modes. This is particularly marked in the case of the lowest 
odd mode, whose critical value is displaced to zero. 

Finally at any given small electron density the trapped plasma can carry an 
even or an odd wave of finite amplitude, and once again waves of smaller ampli- 
tude are unstable for that density in that mode. A minimum density is needed 
before instability sets in at a given wavelength in the double-streaming plasma. 

For simplicity’s sake the argument so far has been restricted to a mono- 
energetic electron plasma in a one-dimensional potential well, but one might 
ask which of the conclusions remains valid if some of the restrictions are relaxed. 
For example, the non-linear behaviour occurs near the boundary because all 
the electrons turn round at the same point. If the plasma particles had a con- 
tinuous velocity distribution this effect would disappear. 

A parabolic potential well causes any particle, whatever its energy, to oscillate 
with the same fixed frequency. Even in a plasma with a continuous velocity 
distribution one would therefore find that there is no Landau damping, just as 
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there is none in a mono-energetic plasma. In  a well of more general shape particles 
of different energy do not have this synchronism, so that phase mixing and there- 
fore Landau damping should occur. 

Of course, if the plasma in the more general well is monoenergetic, all the 
electrons will follow the same trajectory and have the same period. Then one 
might expect that many of the properties of the parabolic well should still apply, 
and so they do. 

Consider then a symmetrical potential well. In  suitable dimensionless terms 
let the restoring force be P(x)  at position x, and let the undisturbed velocity in 
the two streams there be f u. With our previous notation we find the equations 
of motion for the two streams to be 

while the undisturbed velocity is given by 

u(du/dx) = P. (110) 

If now we set ax = udq5, (111) 

then q5 is single valued as long as u does not change sign anywhere within the trap. 
Equations (109) and (1 10) combine to give 

The dimensionless co-ordinates can clearly be chosen so that u = 0, i.e. SO that 
the plasma ends, at q5 = f in. 

The equation for a stationary even mode becomes 

(113) 
u'( - A, %" - - a+--LL = 0, 
U U 

and once again we have to solve a standard eigenvalue problem. A = 0 is the 
lowest eigenvalue, and the corresponding even mode is evidently 5 = u. Equa- 
tion (113) also possess a discrete set of eigenvalues, of which those belonging 
to the even eigenfunctions describe the stationary even modes. 

For an odd mode with small amplification rate CT, 0 is given by 

0" - (u"/u) 0 + (r20 = - 2&', (114) 

from which it follows that 

The equation 

has even solutions 

for P = pzr (r  = 0,192, *- - I ,  

y" - pr(u"/u) y = 0 

Y = Czr(q5) 

which vanish at q5 = fin.. Evidently c,,(q5) = u, and ,u = 1. On solving (114), 
with 0 expanded as a series in czr(q5) one finds that all terms have coefficients of 
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order a except for c,($) whose coefficient is of order a-l. This is the only term 
which matters when a is small. On carrying it back to the equation for B one 
finds that a stationary odd mode is now described by 

The lowest eigensolution of this occurs for A = A,* = 0, and is S .= $a, as one 
easily can verify. Higher eigensolutions can be found by expanding E in terms 
of the odd eigensolutions S2,.--1 of 

un - A -  Sf'-- a+-a = 0. 
u u  

The eigenvalues A* of equation ( 117) are now found to be given by 

This equation is entirely analogous to the equation for A* in the case of the 
parabolic well. The same type of shift in the odd eigenvalues will therefore occur. 

Finally, the non-linear boundary regime remains essentially the same whether 
the mode is even or odd, for its nature depends only on the fact that the trapping 
field near the ends of the plasma varies linearly with distance. This is always 
approximately true, as long as the boundary layer remains thin enough. 

All the properties of a monoenergetic plasma in a parabolic well should there- 
fore have an analogy in symmetrical wells of more general shape. 

The author first heard of this problem while visiting the Culham Laboratory 
as a consultant. He has had very interesting discussions about it with Professor 
W. B. Thompson, Dr G. Rowlands and M i  C. J. H. Watson. 
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